This research is supported by MEXT Q-LEAP (Quantum Leap Flagship Program).
-
Flagship Project:
Development of innovative sensor systems by highly sophisticated control of solid quantum sensors -
Basic Foundation Research:
Research on quantum sensing devices using quantum entangled photons -
Basic Foundation Research:
Establishment of earthquake early alert methods using high-sensitivity gravity gradiometer -
Basic Foundation Research:
Development of photon-number-resolving quantum nano-photonics -
Basic Foundation Research:
Development of quantum atomic magnetometer with dual quantum noise squeezing -
Basic Foundation Research:
Development of Spectroscopic techniques based on cutting-edge quantum optics toward elucidating functions of complex molecular systems -
Basic Foundation Research:
Material science of complex defects for highly-sensitive quantum sensors -
Basic Foundation Research:
Development of next generation high-performance inertial quantum sensors
Flagship Project (Development of innovative sensor systems by highly sophisticated control of solid quantum sensors)
Date | Authors | Journals / DOI | Titles | |
---|---|---|---|---|
1 | 2024/2 | P. Wang, L. Kazak, K. Senkalla, P. Siyushev, R. Abe, T. Taniguchi, S. Onoda, H. Kato, T. Makino, M. Hatano, F. Jelezko, T. Iwasaki | Physical Review Letters 132, 73601 (2024) DOI: 10.1103/PhysRevLett.132.073601 | Transform-limited photon emission from a lead-vacancy center in diamond above 10 K |
2 | 2024/1 | R. Okaniwa, T. Mikawa, Y. Matsuzaki, T. Yamaguchi, R. Suzuki, N. Tokuda, H. Watanabe, N. Mizuochi, K. Sasaki, K. Kobayashi, J. Ishi-Hayase | Journal of Applied Physics 135, 44401 (2024) DOI: 10.1063/5.0184629 | Frequency-tunable magnetic field sensing using continuous-wave optically detected magnetic resonance with nitrogen-vacancy centers in diamond |
3 | 2024/1 | X. Cao, M. Fushimi, S. Chikaki, A. Kuwahata, M. Sekino | AIP Advances 14, 1 (2024) DOI: 10.1063/9.0000694 | Feasibility study on on-board magnetoencephalography with optically pumped magnetometers |
4 | 2023/12 | R. Kitagawa, T. Kohashi, T. Tsuji, S. Nagata, A. Nakatsuka, H. Nitta, Y. Takamura, S. Nakagawa, T. Iwasaki, M. Hatano | Applied Physics Express 17, 1 (2023) DOI: 10.35848/1882-0786/ad1002 | Wide-field imaging of the magnetization process in soft magnetic-thin film using diamond quantum sensors |
5 | 2023/12 | K. Takada, R. Katsumi, T. Yatsui | Optics Express 32, 1 (2023) DOI: 10.1364/OE.509860 | Sensitivity improvement of a single-NV diamond magnetometer using a chiral waveguide |
6 | 2023/12 | K. Kinouchi, Y. Shimotsuma, M. Uemoto, M. Fujiwara, N. Mizuochi, M. Shimizu, K. Miura | Carbon Trends 13, 100318 (2023) DOI: 10.1016/j.cartre.2023.100318 | Laser writing of preferentially orientated nitrogen-vacancy centers in diamond |
7 | 2023/12 | Y. Hatano, J. Tanigawa, A. Nakazono, T. Sekiguchi, S. Onoda, T. Oshima, T. Iwasaki, M. Hatano | Royal Society Philosophical Transactions A 382, 20220312 (2023) DOI: 10.1098/rsta.2022.0312 | A wide dynamic range diamond quantum sensor as an electric vehicle battery monitor |
8 | 2023/11 | T. Tsuji, T. Sekiguchi, T. Iwasaki, M. Hatano | Advanced Quantum Technologies 7, 2300194 (2023) DOI: 10.1002/qute.202300194 | Extending Spin Dephasing Time of Perfectly Aligned Nitrogen-Vacancy Centers by Mitigating Stress Distribution on Highly Misoriented Chemical-Vapor-Deposition Diamond |
9 | 2023/10 | J. Geng, T. Shalomayeva, M. Gryzlova, A. Mukherjee, S. Santonocito, D. Dzhavadzade, D. Bhaktavatsala R. Dasari, H. Kato, R. Stöhr, A.Denisenko, N. Mizuochi, J. Wrachtrup | npj Quantum Information 9, 110 (2023) DOI: 10.1038/s41534-023-00777-7 | Dopant-assisted stabilization of negatively charged single nitrogen-vacancy centers in phosphorus-doped diamond at low temperatures |
10 | 2023/9 | R. Katsumi, K. Takada, S. Naruse, K. Kawai, D. Sato, T. Hizawa, T. Yatsui | Applied Physics Letters 123, 11108 (2023) DOI: 10.1063/5.0161268 | Hybrid integration of ensemble nitrogen-vacancy centers in single-crystal diamond based on pick-flip-and-place transfer printing |
11 | 2023/9 | S. Nishimura, T. Kobayashi, D. Sasaki, T. Tsuji, T. Iwasaki, M. Hatano, K. Sasaki, K. Kobayashi | Applied Physics Letters 123, 11 (2023) DOI: 10.1063/5.0169521 | Wide-field quantitative magnetic imaging of superconducting vortices using perfectly aligned quantum sensors |
12 | 2023/9 | Y. Yamazaki, Y. Masuyama, K. Kojima, T. Ohshima | Physical Review Applied 20, L031001 (2023) DOI: 10.1103/PhysRevApplied.20.L031001 | Highly Sensitive Temperature Sensing Using the Silicon Vacancy in Silicon Carbide by Simultaneously Resonated Optically Detected Magnetic Resonance |
13 | 2023/7 | T. Mikawa, R. Okaniwa, Y. Matsuzaki, N. Tokuda, .J. Ishi-Hayase | Physical Review A 108, 12610 (2023) DOI: 10.1103/PhysRevA.108.012610 | Electron-spin double resonance of nitrogen-vacancy centers in diamond under a strong driving field |
14 | 2023/7 | I. Fujisaki, Y. Araki, Y. Hatano, T. Sekiguchi, Hi. Kato, S. Onoda, T. Ohshima, T. Shibata, T. Iwasaki, M. Hatano | Physica Status Solidi A 221, 2300333 (2023) DOI: 10.1002/pssa.202300333 | Extension of Spin Dephasing Time of Continuously Excited Ensemble Nitrogen Vacancy Centers by Double-Quantum Ramsey Magnetometry with Spin Bath Driving |
15 | 2023/6 | T. Isogawa, Y. Matsuzaki, J. Ishi-Hayase | Physical Review A 107, 62423 (2023) DOI: 10.1103/PhysRevA.107.062423 | Vector dc magnetic-field sensing with a reference microwave field using perfectly aligned nitrogen-vacancy centers in diamond |
16 | 2023/5 | K. Kubota, Y. Hatano, Y. Kainuma, J. Shin, D. Nishitani, C. Shinei, T. Taniguchi, T. Teraji, S. Onoda, T. Ohshima, T. Iwasaki, M. Hatano | Diamond and Related Materials 135, 109853 (2023) DOI: 10.1016/j.diamond.2023.109853 | Wide temperature operation of diamond quantum sensor for electric vehicle battery monitoring |
17 | 2023/4 | R. Kitagawa, S. Nagata, K. Arai, K. Mizuno, T. Tsuji, I. Fujisaki, S. Urashita, T. Kohashi, Y. Takamura, T. Iwasaki, S. Nakagawa, M. Hatano | Physical Review Applied 19, 44089 (2023) DOI: 10.1103/PhysRevApplied.19.044089 | Pressure Sensor Using a Hybrid Structure of a Magnetostrictive Layer and Nitrogen-Vacancy Centers in Diamond |
18 | 2023/4 | S. Motoki, S. Sato, S. Saiki, Y. Masuyama, Y. Yamazaki, T. Ohshima, K. Murata, S. Tsuchida, Y. Higikata | Journal of Applied Physics 133, 15 (2023) DOI: 10.1063/5.0139801 | Optically detected magnetic resonance of silicon vacancies in 4H-SiC at elevated temperatures toward magnetic sensing under harsh environments |
19 | 2023/4 | M. Haruyama, Y. Okigawa, M. Okada, H. Nakajima, T. Okazaki, H. Kato, T. Makino, T. Yamada | Applied Physics Letters 122, 14 (2023) DOI: 10.1063/5.0143062 | Charge stabilization of shallow nitrogen-vacancy centers using graphene/diamond junctions |
20 | 2023/4 | T. F. Segawa, R. Igarashi | Progress in Nucliar Magnetic Resonance Spectroscopy 134-135 (2023) DOI: 10.1016/j.pnmrs.2022.12.001 | Nanoscale quantum sensing with Nitrogen-Vacancy centers in nanodiamonds – A magnetic resonance perspective |
Basic Foundation Research (Research on quantum sensing devices using quantum entangled photons)
Date | Authors | Journals / DOI | Titles | |
---|---|---|---|---|
1 | 2024/1 | M. Hojo, K.] Tanaka | Optics Express 32, 2, 1902-1913 (2024) DOI: 10.1364/OE.504654 | Single-pass generation of widely-tunable frequency-domain entangled photon pairs |
2 | 2024/1 | T.Tashima, Y.Mukai, M.Arahata, N.Oda, M.Hisamitsu, K.Tokuda, R.Okamoto, S.Takeuchi | Optica 11, 1, 87-87 (2024) DOI: 10.1364/OPTICA.504450 | Ultra-broadband quantum infrared spectroscopy |
3 | 2023/12 | G.Park, I.Matsumoto, T.Kiyohara, H F.Hofmann, R.Okamoto, S.Takeuchi | Science Advances 9, 51, eadj8146/1-8 (2023) DOI: 10.1126/sciadv.adj8146 | Realization of photon correlations beyond the linear optics limit |
4 | 2023/12 | J.Kaur, Y.Mukai, R.Okamoto, S.Takeuchi | PHYSICAL REVIEW A 108, 6, 063714/1-9 (2023) DOI: 10.1103/PhysRevA.108.063714 | Spectral domain nonlinear quantum interferometry with pulsed laser excitation |
5 | 2023/8 | M.Kaneko, H.Takashima, K.Shimazaki, S.Takeuchi, T.Kimoto | APL Materials 11, 9, 091121/1-13 (2023) DOI: 10.1063/5.0162610 | Impact of the oxidation temperature on the density of single-photon sources formed at SiO2/SiC interface |
6 | 2023/7 | B.Cao, K.Hayama, S.Suezawa, M.Hisamitsu, K.Tokuda, S.Kurimura, R.Okamoto, S.Takeuchi | Optics Express 31, 14, 23551-23561 (2023) DOI: 10.1364/OE.488978 | Non-collinear generation of ultra-broadband parametric fluorescence photon pairs using chirped quasi-phase metching slab waveguides |
7 | 2023/6 | F. China, M. Yabuno, S. Mima, S. Miyajima, H. Terai, S. Miki | Optics Express 31, 20471-20479 31, 12, 20471-20479 (2023) DOI: 10.1364/OE.492957 | Highly efficient NbTiN nanostrip single-photon detectors using dielectric multilayer cavities for 2-mm wavelength band |
8 | 2023/5 | M. Hojo, S. Tani, Y. Kobayashi, K. Tanaka | Scientific Reports 13, 8520 (2023) DOI: 10.1038/s41598-023-35831-z | Coincidence measurements of two quantum-correlated photon pairs widely separated in the frequency domain |
9 | 2023/4 | H.Takashima, A. W Schell, S.Takeuchi | Optics Express 31, 9, 13566-13575 (2023) DOI: 10.1364/OE.483843 | Numerical analysis of the ultra-wide tunability of nanofiber Bragg cavities |
Basic Foundation Research (Development of quantum atomic magnetometer with dual quantum noise squeezing)
Date | Authors | Journals / DOI | Titles | |
---|---|---|---|---|
1 | 2023/5 | J. Takai, K. Shibata, N. Sekiguchi, T. Hirano | Physical Review A 107, 53308, 1月9日 (2023) DOI: 10.1103/PhysRevA.107.053308 | Multistate interferometric measurement of the nonlinear ac Stark shift |
Basic Foundation Research (Development of Spectroscopic techniques based on cutting-edge quantum optics toward elucidating functions of complex molecular systems)
Date | Authors | Journals / DOI | Titles | |
---|---|---|---|---|
1 | 2024/3 | Y. Fujihashi, A. Ishizaki, R. Shimizu | Journal of Chemical Physics 160, 104201 (2024) DOI: 10.1063/5.0189134 | Pathway selectivity in time-resolved spectroscopy using two-photon coincidence counting with quantum entangled photons |
2 | 2024/2 | P. Koviri, H. Komori, H. Tian, M. Ishizeki, T. Kato, A. Asahara, R. Shimizu, T. R. Schibli, K. Minoshima | Applied Physics Express 17, 22001 (2024) DOI: 10.35848/1882-0786/ad2112 | Single-photon level ultrafast time-resolved measurement using two-color dual-comb-based asynchronous linear optical sampling |
3 | 2023/9 | Y. Fujihashi, K. Miwa, M. Higashi, A. Ishizaki | Journal of Chemical Physics 159, 114201 (2023) DOI: 10.1063/5.0169768 | Probing exciton dynamics with spectral selectivity through the use of quantum entangled photons |
Basic Foundation Research (Material science of complex defects for highly-sensitive quantum sensors)
Date | Authors | Journals / DOI | Titles | |
---|---|---|---|---|
1 | 2024/3 | T Kageura, Y Sasama, T Teraji, K Watanabe, T Taniguchi, K Yamada | ACS Applied Materials & Interfaces 16, 10 (2024) DOI: 10.1021/acsami.3c17544 | Spin-State Control of Shallow Single NV Centers in Hydrogen-Terminated Diamond |
2 | 2024/2 | JW Liu, T Teraji, B Da, Y Koide | Applied Physics Letters 124, 72103 (2024) DOI: 10.1063/5.0194424 | Electrical property improvement for boron-doped diamond metal–oxide–semiconductor field-effect transistors |
3 | 2024/1 | J Liu, T Teraji, B Da, Y Koide | IEEE Transactions on Electron Devices 71, 3 (2024) DOI: 10.1109/ted.2024.3356468 | Suppression of High Threshold Voltage for Boron-Doped Diamond MOSFETs |
4 | 2023/12 | T. Teraji, C. Shinei, Y. Masuyama, M. Miyakawa, T. Taniguchi | Philosophical Transactions of the Royal Society A, Mathmatical, Physical and Engineering Sciences 382, 20220322 (2023) DOI: 10.1098/rsta.2022.0322 | Nitrogen Concentration Control during Diamond Growth for NV− Center Formation |
5 | 2023/10 | C. Shinei, H. Abe, T. Ohshima, T. Teraji | Diamond and Related Materials 140, B (2023) DOI: 10.1016/j.diamond.2023.110523 | Change in charge state of NV center caused by monovacancy formation |
6 | 2023/8 | A. Chanuntranont, K. Otani, D. Saito, Y. Ueda, M. Tsugawa, S. Usui, Y. Miyake, T. Teraji, S. Onoda, T. Shinada, H. Kawarada, T. Tanii | Applied Physics Express 16, 82006 (2023) DOI: 10.35848/1882-0786/acede9 | Enhancing photon collection from single shallow nitrogen-vacancy centers in diamond nanopillars for quantum heterodyne measurements |
7 | 2023/7 | S. Ito, M. Tsukamoto, K. Ogawa, T. Teraji, K. Sasaki, K. Kobayashi | Journal of the Physical Society of Japan 92, 84701 (2023) DOI: 10.7566/JPSJ.92.084701 | Optical-power-dependent Splitting of Magnetic Resonance in Nitrogen-vacancy Centers in Diamond |
8 | 2023/5 | K. Sasaki, Y. Nakamura, T. Teraji, T. Oka, K. Kobayashi | Physical Review A 107, 53113, 1月6日 (2023) DOI: 10.1103/PhysRevA.107.053113 | Demonstration of geometric diabatic control of quantum states |
9 | 2023/5 | K. Kubota, Y. Hatano, Y. Kainuma, J. Shin, D. Nishitani, C. Shinei, T. Taniguchi, T. Teraji, S. Onoda, T. Ohshima, T. Iwasaki, M. Hatano | Diamond and Related Materials 135, 109853-1~8 (2023) DOI: 10.1016/j.diamond.2023.109853 | Wide temperature operation of diamond quantum sensor for electric vehicle battery monitoring |
10 | 2023/4 | T. Teraji, C. Shinei | Journal of Applied Physics 133, 16, 165101-1~11 (2023) DOI: 10.1063/5.0143652 | Nitrogen-related point defects in homoepitaxial diamond (100) freestanding single crystals |